PH1 Mark Scheme – January 2011

Que	Question		Marking details	Marks Available
1	(a)	(i)	[Rate of] flow of charge $I = \frac{Q}{t}$ or $\frac{dQ}{dt}$ with Q defined	1
		(ii)	i ai	1
	(b)	(i) (ii)	x = y + z charge	1 1
	(c)	(i)	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ or $R = \frac{R_1 R_2}{R_1 + R_2}$ of by impl. (1)	
			$R_{\parallel} = 30 \ \Omega \ (1); R_{\text{Total}} = 40 \ \Omega \ (1) \ [\text{no e.c.f.}]$	3
		(ii)	[Current $x = $] 0.15 A e.c.f. [Accept equiv., e.g. $^{6}/_{40}$, but not 0.2A without working]	1
		(iii)	$V_1 = 0.15 \times 10 $ [= 1.5 V] (1) [e.c.f.] $V_2 = 6 - 1.5 $ [= 4.5 V] [or $30 \times 0.15 = 4.5 $ V] (1) [e.c.f.]	2
		(iv)	$y = \frac{4.5}{120} [= 0.038 \text{ A}] (1)$	
			$z = 0.15 - 0.038$ e.c.f. [= 0.11 A] or $\frac{4.5}{40}$ [= 0.11 A] (1)	2
			[Accept solutions based upon ratios, e.g. $y = \frac{0.15}{4}$]	[12]
2.	(a)	(i)	$R = \frac{1.6}{15 \times 10^{-3} \text{ (1)}} \text{ (reading from graph, accept } 14 \times 10^{-3}\text{)}$	
			$R=107 \Omega$ [answers in range $107-114 \Omega$]	2
		(ii)	[Very] high [accept infinite]	1
	(b)	(i)	V not proportion to I / not a straight line [through the origin]	1
		(ii)	["Not through origin" insufficient on its own] Bulb / thermistor [Not wire or superconductor, but accept superconducting device, e.g. superconducting electromagnet coil]	1
	(c)		$R = \frac{V}{I}(1); R = \frac{10.4(1)}{15 \times 10^{-3}} = 693 \Omega(1)$	3
			Alt 1: $10.4 = \frac{R}{R + 107} \times 12$ [or equiv.] (1) manipulation e.g. $10.4R + 112.8 = 12(1)$; $R = 696 \Omega$ (1)	
			Alt 2: $R_{\rm T} = \frac{V}{I}$ or $\frac{12}{1.5 \times 10^{-3}}$ (1) = 800 Ω (1); R 800 – 107 = 693 Ω (1)	[8]

Question		Marking details	Marks Available
3 (a)		(1) [Incomplete the late of th	
		Number of free electrons = $nAvt$ [or nAl] (1) Total change = $nAvte$ [or $nAle$] (1) $I = \frac{nAvte}{t}$ with cancelling shown [or $\frac{nAle}{t}$, where $\frac{l}{t} = v$ shown] (1)	4
(b))	2.0 = 1.0×10 ²⁹ ×1.7×10 ⁻⁶ v×1.6×10 ⁻¹⁹ (1) [substitution] v = 7.4 × 10 ⁻⁵ m s ⁻¹ ((unit))(1)	2
(c))	collisions [accept obstructions](1) between <u>free electrons and copper atoms / ions / lattice</u> (1) [accept: delocalised / moving / conducting electrons]	2
(d)		$R = \frac{P}{I^2} \text{ [or } P = I^2 R \text{] (1); } R = \frac{0.1}{4} \text{ [=0.025 }\Omega \text{] (1)}$ $\rho = \frac{0.025 \text{[e.c.f.]} \times 1.7 \times 10^{-6}}{2.5} \text{ (1) [manipulation i.e. } \rho = \frac{RA}{l} \text{ or with}$ figures] $\rho = 1.7 \times 10^{-8} \Omega \text{ m. (1)}$	4
(e,)	cross-sectional area smaller (1) n the same (1) resistivity the same (1)	3 [15]
4. (a)) (i	To overcome the frictional / drag force or because the applied force is insufficient. 1 gradient attempted (1); Correct substitution, e.g. $\frac{3.0-0.5}{3.0}$ (1)	1
		gradient gradient 3.0 $m = 0.8(3) \text{ kg ((unit)) (1)}$	3
(b)) (i	A = contact force of surface on body [accept <u>normal</u> reaction](1) B = gravitational force of Earth on body (1) [accept: weight / mg]	2
	(ii	Gravitation force of body (mass) (1) on Earth (1)	2

Question			Marking details	Marks Available	
5.		(i)	$[\pi \times 22^2](1)$ [accept πr^2] × 14 (1) [=21 287 m ³ s ⁻¹] [21 287 \rightarrow 1 mark]	2	
		(ii)	mass every second = 1.2×21000 [or as calculated in (i)] [= $25 \ 200$] kg s ⁻¹	1	
		(iii)	Initial $E_{k1} = \frac{1}{2} \times 25\ 200 \times 14^{2}\ (1)$ e.c.f. from (ii) Final $E_{k2} = \frac{1}{2} \times 25\ 200 \times 14^{2}\ (1)$ e.c.f. from (ii) $\Delta E_{k} = 945 \times 10^{3} \text{ J s}^{-1}\ (1)$ e.c.f. from E_{k1} and E_{k2} NB. "Solutions" based upon $\frac{1}{2} m \times (14 - 11)^{2} \rightarrow 0$ Useful power available = 614 250 J s ⁻¹ (1) e.c.f. from (iii)	3	
		(11)	$N_{\text{turbines}} = \frac{1000 \times 10^6}{614250} [=1628] (1)$	2	
				[8]	
6	(a)		$Velocity = \frac{Displacement}{time} / displacement per unit time / rate of$		
			change of displacement [but not per unit time] / $\frac{ds}{dt}$ with s defined]	1	
	(b)	(i)	v + 1 [or equiv]	1	
		(ii)	$t = \frac{s}{v}$ used [or by impl.](1) $\to t = \frac{12(1)}{15}$ [= 8 s]	2	
		(iii)	$v + 1 = \frac{28}{8}(1)$ [allow e.c.f. from (i) only on $v - 1$ or $1 - v$] manipulation (1) $v = 2.5 \text{ m s}^{-1}(1)$ Alt 1: Distance moved by Stacey in $8 \text{ s} = 8 \text{ m} \checkmark$ Distance moved by walkway in $8 \text{ s} = 28 - 8 = 20 \text{ m} \checkmark$ Speed of walkway = $\frac{20}{8} = 2.5 \text{ m s}^{-1} \checkmark$ Alt 2: Velocity of Stacey on walkway = $\frac{28}{8} = 3.5 \text{ m s}^{-1} \checkmark$ Velocity of walkway = $3.5 - 1.0 \checkmark = 2.5 \text{ m s}^{-1} \checkmark$	3	
		(iv)	$5.0 \text{ m s}^{-1} \text{ e.c.f. from (iii), i.e. ans} = 2.5 + (iii)$	1	
				[8]	

Question			Marking details	Marks Available	
7.	(a)		Use of cos 70° (1) $2T \cos 70^\circ = 800$ (1) [$\rightarrow T = 1170$ N] [Accept mysterious division by 2 (b.o.d.)]	2	
	(b)	(i)	Area under graph attempted or $\frac{1}{2} Fx$ or $\frac{1}{2} kx^2$ (1) 240 J (1)	2	
		(ii)	Initial energy stored in bow converted entirely to E_k of arrow (1) 240 e.c.f. = $\frac{1}{2}$ 50 × 10 ⁻³ v^2 (1) [subst] manipulation leading to $v = 98 \text{ m s}^{-1}$ shown. (1)	3	
	(c)	(i)	[Final mark not available if incorrect E_k used]	2	
	(0)	(ii)	$t = 0.55 \text{ s [accept } 0.6 \text{ s] } (1)$ $D = V_{\text{H}} t \text{ [or by imp.] } (1) \text{ e.c.f. of } t$ $D = 98 \text{ [or } 100] \times 0.55 \text{ [or } 0.6] \text{ [e.c.f.]} \therefore D = 54 \text{ m } (1)$	3	
	(d)	(iii)	$v_{\text{vertical}} = u + at$ and $u = 0$ (1) [or equiv or by impl.] $v_{\text{v}} = 5.4 \text{ m s}^{-1}$ (1) $v_{\text{resultant}} = \sqrt{5.4^2 + 98.0^2}$ (1) or $v^2 = 5.4^2 + 98.0^2$ $v_{\text{resultant}} = 98.1 \text{ m s}^{-1}$ (1) Angle to horizontal [clearly identified] = $\sin^{-1} \frac{5.4}{98.1} = 3^{\circ}$ (1) [Or equivalent correct application of other trig function] Greater [initial] force [or equiv.] required to pull the Turkish bow string [through a given distance] (1) [or more work / energy needed] Greater area under the Turkish bow curve (1) [leading to] more [elastic] potential energy stored (1). Arrows will leave Turkish bow with a greater speed / velocity (1) [Accept converse arguments]. [Alt to 2^{nd} marking point: linking to 1^{st} marking point because gradient of graph greater for Turkish bow]	5	
				[21]	